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1. INTRODUCTION

1.1 Belief Revision

The most frequently discussed method of revising a subjective probabi-

lity distribution P to obtain a new distribution P , based on the occur-
*

rence of an event E, is Bayes' rule: P (A) - P(AE)/P(E). Richard Jeffrey

(1965, 1968) has argued persuasively that Bayes' rule is not the only reasonable

way to update: use of Bayes' rule presupposes that both P(E) and P(AE)

have been previously quantified. In many instances this will clearly not

be the case. Consider the following example:

Coin Tossing. Suppose we are thinking about three tosses of a coin. Under

the usual circumstances a probability assignment is made on the eight possi-

ble outcomes 2 = {000, 001, 010, 011, 100, 101, 110, 1111. Suppose an in-

formant, believed trustworthy, announces: "Oh, I see you're thinking about

that coin. I just spun it 100 times in the other room and it came up heads

80 times". This is clearly relevant information and we will obviously want

to revise our opinion. The information cannot be put in terms of the occur-

rence of an event in the eight point space 0 and the Bayes rule is not

directly available. Among many possible approaches, four methods of in-

corporating the information will be discussed.

a) Complete Reassessment.

b) Jeffrey's Rule.

c) Retrospective Conditioning.

d) Exchangeability.

a) Complete Reassessment. In the absence of further structure it is

always possible to react to the new information by completely reassessing
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P , presumably using the same techniques used to quantify the original

distribution P.

b) Jeffrey's Rule. Suppose that the original probability assignment

P was exchangeable. That is, P(001) - P(010) - P(100) and P(110) -

P(101) = P(0ll). In the situation described, the information provided con-

tains no information about the order of the next three tosses and thus we

may well require the new probability distribution remain exchangeable. This

is equivalent to considering a partition {E }3  of . where E . {0001,
i= h0 0

EI = {001, 010, 100}, E2 = {110, 101, 01l}, E3 = {111}. Here Ei is the

set of outcomes with i ones and exchangeability implies that for any
*

event A , and any i , P(AIEi) = P (AJE i). To complete the probability

assignment P , a subjective assessment of P (Ei  is needed. Then P

is determined by

P (A) = EP*(AIEi) P (Ei) = ZP(AIE i) P (Ei)

The rule

(1.1) P (A) - ZP(AIEi) p (Ei)

is known in the philosophical literature as Jeffrey's rule of conditioning.

It is valid whenever there is a partition {Ei} of the sample space such

that

(J) P (AIEi) - P(AIEi) for all A and i
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c) Retrospective Conditioning. Some subjectivists have suggested try-

ing to analyze this kind of problem by momentarily disregarding the new infor-

mation, quantifying a distribution on a space Q rich enough to allow or-

dinary conditioning to be used, and then using Bayes' rule. For some dis-

cussion of this, see de Finetti (1972, Chap. 8) and Section 2.1 below. It

is worth emphasizing that this type of retrospective conditioning is an ex-

tremely difficult psychological task; Fischoff (1975), and Fischoff and

Beyth (1975) have demonstrated that "reporting the outcome of a historical

event increases the perceived likelihood of that outcome", and Slovic and

Fischoff (1977) have shown that "similar hindsight effects occur when peo-

ple evaluate the predictability of scientific results -- they tend to be-

lieve they 'knew all along' what the experiments would find". Nor, in

principle, is retrospective conditioning simpler than complete reassessment:

since P *(A) = P(AE)/P(E) in this case, assessment of P(AE) for each A

is equivalent to reassessment of P (A).

d) Exchangeability. The three future tosses of the coin may be regarded

as exchangeable with the 100 tosses reported by our informant. Standard

Bayesian computations can then be used.

Approaches b, c, and d are all special routes to the requantification

of approach a; each is valid or useful under different assumptions. For

example, Jeffrey's rule assumes the availability of a partition and the val-

idity of assumption J. Retrospective conditioning assumes that one can do

a reasonable job of assessing probabilities as if the data had not been ob-

served. Exchangeabillty assunes that future trials are based on the same

mechanism as past ones; in the example this might not be reasonable, per-

haps the past trials were spins on a table, the future trials are tosses

onto the floor.

3



In this paper we study the assumptions and conclusions that attend

Jeffrey's rule. Our main contributions are technical: In Section 2 we

connect Jeffrey's rule with sufficiency; Sections 3, 4, and 5 analyze

what happens when two or more partitions are considered. In Section 3 we

discuss commutativity of successive updating. In Section 4 we discuss

methods for dealing with two partitions simultaneously, giving a necessary

and sufficient condition for two probability measures on two algebras to

have a common extension. In Section 5 we discuss some other motivations

for Jeffrey's rule when condition (J) has not been subjectively checked.

Jeffrey's rule gives the "closest" measure to P which fixes P *(Ei)

and is related to the iterated proportional fitting procedure used in the

statistical analysis of contingency tables. For ease of exposition, most

of this paper assumes a countable state space or a countable partition

{E i In Section 6 we describe the mathematical machinery needed to

extend the previous results to abstract probability spaces.

1.2 Historical and Bibliographical Note

We do not propose to survey here the growing philosophical literature

on probability revision and Jeffrey's rule. The following quotations and

references, however, should make clear that the problem was early recognized

by the founders of modern subjective probability, and may be helpful as a

guide to the recent literature.

From the subjectivistic perspective, the conditional probability P(AJE)

is the probability we currently would attribute to an event A if in addi-

tion to our present information we were also to learn E. In the language

of betting, it is "the probability that we would regard as fair for a bet

on A to be made immediately, but to become operative only if E occurs"

(de Finetti, 1972, p. 193; cf. Ramsey 1931, p. 180). In this formulation,
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the equality P(AIE) - P(AE)/P(E) is not a definition, but follows as a

theorem derived from the assumption of coherence (de Finetti, 1975, Chapter 4).

If we actually learn E to be true, it is conventional to adopt as

one's new probability

(1.2) P *(A) - P(AJE)

Assumption (1.2) seems entirely plausible - what else should our pro-

bability of A be, given that we have learned E , and nothing else, other

than the probability which we were willing to attribute to A if we were

subsequently to learn E? Several authors have pointed out that (1.2) is

an assumption. Hacking (1967, p. 314) refers to (1.2) as the dynamic assump-

tion of personalism, to contrast it with the static nature of the assumption

of coherence. Hacking (1967, pp. 315-316) points out that coherence in its

usual sense does not entail (1.2) and de Finetti concedes as much when he

refers to an unexplained "criterion of temporal coherency" (de Finetti, 1972,

p. 150); cf. Ramsey (1931, p. 192), who similarly asserts that "when my

degrees of belief change in this way we can say that they have been changed

consistently by my observation". For two attempts at a partial justifica-

tion, however, see Freedman and Purves (1969), Teller (1976).

Ramsey himself perhaps stated the difficulty most clearly:

(The degree of belief in p given .] is not the same as the

degree to which [a subject] would believe p, if he believed

q for certain; for knowledge of q might for psychological rea-

sons profoundly alter his whole system of beliefs [Ramsey 1931,

p. 180; cf. however, p. 192].

Other reservations about the adequacy of conditionalization as an

exclusive model for belief revision center around its assumption about

5



r
the form in which new information is received. Indeed, Jeffrey's original

philosophical motivation for introducing probability kinematics was his be-

lief that "It is rarely or never that there is a proposition for which the

direct effect of an observation is to change the observer's degree of be-

lief in that proposition to 1" (Jeffrey 1968, p. 171). Similar criticisms

have been raised by Shafer (1979, 1981), whose theory of belief functions

is a more radical attempt to deal with the problem. Both hold that condi-

tioning on an event requires the assignment of an initial probability for

that event, prior (in principle at least) to its observation, and for many

classes of sensory experiences this seems forced, unrealistic, or impossible.

For example, suppose we are about to hear one of two recordings of

Shakespeare on the radio, to be read by either Olivier or Gielgud, but are

unsure as to which,and have a prior with mass on Olivier, on Gielgud.

After hearing the recording, one might judge it fairly likely, but by no

means certain, to be by Olivier. The change in belief takes place by di-

rect recognition of the voice; all the integration of sensory stimuli has

already taken place at a subconscious level. To demand a list of objective

vocal features which we condition on in order to affect the change would

be a logician's parody of a complex psychological process.

Another issue is that our "[subjective] probabilities can change in

the light of calculations or of pure thought without any change in the

empirical data..." (Good 1977, p. 140). I. J. Good terms such probabili-

ties "evolving" or "dynamic" and has discussed them in a number of papers

(cf., e.g., Good 1950, p. 49; 1968; 1977). There are serious difficulties

in attempting to model such types of belief revision, particularly if, as

noted by Savage (1967, p. 308) and others, the new information is a logical

or mathematical consequence of the old. For recent progress in this direc-

tion, see Garber (1982), Jeffrey (1982).
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It is useful in considering these questions to distinguish between the

actual, practical application of Bayes' theorem and its use in modelling

successive revision in belief of a hypothetical "rational agent". As a

practical matter our new beliefs may bear little relation to our old ones;

modelling process of change so general seems elusive. Assuming "temporal

coherence" results in a plausible description of belief revision with in-

teresting mathematical consequences (convergence of limiting frequencies,

asymptotic normality of posterior distributions, etc.). Jeffrey's rule

places fewer restrictions on the hypothesized form of belief revision,

yet retains enough structure to permit interesting conclusions to emerge

(hence the name "probability kinematics").

Jeffrey's rule was introduced in Jeffrey (1957) and is further dis-

cussed in Jeffrey (1965, Chapter 11) and Jeffrey (1968). Isaac Levi (1967;

1970, pp. 147-152) is a vigorous critic of Jeffrey's version of probability

kinematics, but has been thoroughly rebutted by Jeffrey (1970, especially

at pp. 173-179). Jeffrey's idea was partially anticipated by the Oxford

astronomer Donkin (1851, p. 356); cf. Boole (1854, pp. 251-252), Whitworth

(1901, pp. 162-169, 181-182), Keynes (1921, pp. 176-177). An independent

proposal of Jeffrey's rule appears in Griffeath and Snell (1974). The

last few years have seen a sudden upsurge of interest in Jeffrey condi-

tionalization; papers have appeared by May and Harper (1976), Teller (1976),

Field (1978), Shafer (1981), Williams (1980), van Fraassen (1980), Garber

(1980), Domotor (1980), and Armendt (1980).
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2. JEFFREY'S RULE OF CONDITIONING

In this section we develop some of the mathematics connected with

Jeffrey's rule of conditioning. Formally: 0 is a countable set, P and

P are probability measures on the subsets of S , and {Ei } is a parti-

tion of Q.

2.1 Bayesian Conditioning

Jeffrey's rule of conditioning is a generalization of ordinary condi-
* *

tioning: given the partition {E,Ec} , if P (E) - 1 and P (A) -

EP(AIEi) P(Ei) , then P *(A) - P(AIE). We therefore begin by investiga-
*

ting when one measure P can arise from another measure P by condition-
*

ing. To be precise, suppose P and P are measures on a countable space
*

Q. We will say that P can be obtained from P by conditioning if there

exists a probability space ( , c, Q) , and events {Ew}w, E c a (to be

thought of as "E = w occurred"), such that Q(E ) P() , and an event"3

E E Q such that Q(E) > 0 and Q(E JE) - P*(w).

Theorem 2.1: P can be obtained from P by conditioning if and only

if

(2.1) P () < B P() for some constant B > 1 and all w.
*

Proof: If P can be obtained from P by conditioning, let ( a, t, Q),

{E} ,E be given. Then for any w c ,

P*(w) - Q(E *E) < Q(E) PM()

This -.) tQ(EQE) Q(E)

* This gives (2.1) with B 1 /Q(E).

7



Conversely, suppose (2.1) is satisfied. Let Q = Q x {a,b} =

{(W,a), (w,b)} WE S?. Let G be the set of all subsets of S. Let

E = (w,a) U (w,b) , and let E U (w,a). Solving the problem of finding
WEQ

Q formally leads to introducing a parameter t, 0 < t < 1 (t will turn

out to be Q(E)), and setting

Q((w,a)) = t P*(w)

Q((w,b)) = P(w) - t P (w)

Because (2.1) is satisfied, t can be chosen small enough so that

Q:(w,b)) > 0. It is then straightforward to check that Q is a probability

on 0 satisfying Q(E ) = P() and Q(E JE) = Q((w,a))/EQ((w,a)) = P (W)

as required.

Condition (2.1) places a restriction on P, P when both have countable

support (but not when both have finite support and supp(P ) c supp(P)). For

example, no geometric distribution can be obtained from a Poisson distribu-

tion by conditioning, but any Poisson distribution can be obtained from any

geometric. If Q is uncountable, (2.1) can be replaced by the conditions

* dP
P << P and -- E LO ; see Section 6.

2.2 Jeffrey Conditionalization and Sufficiency

In the example discussed in Section 1, the partition {Ei } naturally

arose in the course of constructing P from P. But one might instead

envisage being given another person's {P,P} and then trying to recon-

struct a possible partition {E I from which the pair P,P} could have

arisen via Jeffrey conditionalization. Unlike Bayesian conditionalization,

this turns out to be always possible.
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To apply Jeffrey's rule, it is required to find a partition {E } such

that

P(AIE i) = P (AIEi) for all A and i

This is simply the problem of finding a sufficient partition for the two-element

family U = {P,P*} ; see Blackwell and Girshick (1954), Chapter 8. This

simple observation makes possible the translation of the ideas of minimal

sufficiency and likelihood ratio into the language of Jeffrey's rule.

A partition {E i } is said to be coarser than a second {Ei} if every

E. is a union of sets in {E.}. For purposes of updating probability, a
1 J

*

coarser partition has the advantage that P need be specified on fewer

sets. A coarsest sufficient partition is said to be minimal sufficient.

The following (well known) theorem gives an alternate version of Jeffrey's

rule and states that there is always a coarsest partition for which Jeffrey's

rule is valid. Some philosophical implications of this fact are discussed

by van Fraassen (1980).

Theorem 2.2: Let P, P be probability measures with common support

on the countable set 0. If {E.i is a countable partition of Q such

that P(AIE i) = P*(AIE i) for all subsets A and elements of the partition

Ei , then for each w E

, P (Eid
(2.2) P () = P(W), W E Ei

P(Eid)

If R= {x: P* (w)/P(w) = x, w c}, and E = {W:P*()/P(W) -x, E },
x

then {Ex : xE R} is a minimal sufficient partition for {P, P*}.

Proof: The first statement is a version of the Fisher-Neyman factori-

zation theorem; for the second, see Blackwell and Girshick (1957, p.221). 0

The following example illustrates the use of the likelihood ratio form

of Jeffrey's rule.

9



Example 2.1 (Whitworth 1901, pp. 167-168):

(jwst"i a 138. 4, /, C were entermd for a rae, "nd their respective4 5

chances (if wintaing were emtimated at I ' A ,-1 . But circuistances

come to our knowledge in favour of A, which raie his chance to j;

what arc now the chances in favour of B and C respectively I

Anser. A could lose in two ways, vi, either by B winning or by
C winning, and the respective chances of his losing in these ways were

d iri and asd th chance of his eing at all was j. But

after our ceemsion of knowledge the clace of hi losing at all beoines
I Ohat i., it lwecoiiaev diminimh,l iii the ratio of 18 : 11. 11'etie the

charce of either way in which he might lose is diminished in the Mme
ratio. 'ThIe(*rorI the cia ive of II wiltilig is now

11 4
x- or -

and of C winning
5 1) 5i"1x 8'0 or 8

These are therefore the required chances.

2.3 Generalization

There is a version of Jeffrey's rule which takes the support of the
,

measures P and P into account. Call a point w c Q a support point

of P if P() > 0. Let supp(P) denote the set of support points of P.
*

In general, P and P will not have the same support - indeed with stan-

dard conditioning supp(P) is strictly smaller than supp(P). Clearly P

will simply have to be freshly quantified on supp(P*) - supp(P). This

leads to the following generalized form of Jeffrey's rule:

(2.3) Suppose {Ei} is a partition of S = supp(P) n supp(P*)

such that

(J) P(wjE i) = )  for all W E S and all i.

Then for any set A,

P (A) - ZP(AjE1) P*(E ) + P*(A n (supp(P*) - supp(P))).

In what follows, we will assume that supp(P*) = supp(P). Then

Jeffrey's rule simplifies to the form P *(A) - .P(AIEi) P*(Ei) as given in

(1.2). All the results we prove have straightforward modifications to the

general situation (2.3) by restricting attention to supp(P*) fl supp(P).

10



3. SUCCESSIVE UPDATING

In the usual applications of subjective probability, information builds

up by successive conditioning. In Bayesian conditionalization the order in

which new information is incorporated is irrelevant; in Jeffrey conditional-

ization the situation is more complex.

3.1 The Problem

Consider an initial probability P which is Jeffrey updated to the new

probability P based on a partition {E } 1e and new probabilities

**Pe (E i p= 1i 19 i 25 .... , e ; clearly P* (A E i) P e(AIE) = P(AJE i) holds

for our new opinion. (P denotes our new opinion, however it is obtained:

by Bayes' theorem, Jeffrey's rule, complete requantification or whatever.

P denotes the specific updated probability measure that results from Jeffreyef
conditionalization.) We then decide to update based on {Fjqj}j , and indi-

cate this order of updating by P . To use Jeffrey's rule at the second stage

we must, of course, accept the (J) condition so P CAlF) - P (AIF)i - P J(AIF).

Clearly the order of updating matters, since the current opinion dominates:

Example 3.1. e -a , i.e., our belief on the partition {Ei } changes

first to pi and then to qi. The first revision and second revision differ

and we currently believe P (E) = qi.

Example 3.2. Suppose that in a criminal case we are trying to decide

which of four defendants, called a, b, c, d, is a thief. We initially

think P(a) - P(b) = P(c) = P(d) - 1/4. Evidence is then introduced to show

that the thief was probably left-handed. The evidence does not demonstrate

that the thief was definitely left-handed but leads us to conclude that

P(thief left-handed) z .8. If a and b are the defendants who are

11



left-handed, then E1 - {a,b}, E2 - {c,d} and Pe(E1) .8, Pe(E2) - .2.

If the only effect of the evidence was to alter the probability of left-

handedness - in the sense that P(AIE i) - Pe(AIEi) - then P is obtained

from Jeffrey's rule as Pe(a) - .4, Pe(b) - .4, P (c) = .1, Pe(d) - .1.

Evidence is next presented that it is somewhat likely that the thief was a

woman. If the female defendants are a and c , then F1 = {a,c}, F2 = {b,d}.

If Pe(Fl) - .7 and Jeffrey updating is again judged acceptable, then

P e(a) - .56, P (b) = .24, P (c)= .14, Pe(d)- .06

If instead the evidence (F1, .7), (F2, .3) is presented first and (El, .8),

(E2, .2) is presented second, is P equal to P,? Example 3.1 shows

that in general the order matters since the currently held opinion governs;

in this example the reader may check that order does not matter. We now

investigate why.

3.2 Commutativity

There are two aspects to successive updating:

The updating information at each stage:

}e f
3.1){EiPi i-1 {Fj,qjlj= I

the J condition at each stage:

(3.2) P (AIE) - P(AIEi) and P*(AIFj) P (AIFj)

or, if updating is being considered in the other order,

P*(AIF) - P(AIFj) and P;(AIEi) - P (AIEi)

12



The J condition is an internal or psychological condition which must be

checked or accepted at each stage. Mathematics has nothing to offer here.

Mathematics can be used to check if (3.1) is compatible with commutati-

vity. Since Jeffrey updating fixes the probabilities on the partition (i.e.,

P (F) =q and P (Ei) - pi), commutativity will be possible only if

(3.3) P (Ei) pi and P (F)= q , for all i and j

It turns out that this condition is sufficient:

Theorem 3.1: If (3.3) holds, then Pea P

In other words, whenever P and P both incorporate (3.1), they

actually coincide. Theorem 3.1 is an immediate consequence of Csiszar (1975,

Theorem 3.2) and its proof is omitted. Csiszar's theorem implies that the

common measure P = P is the "I-projection" of the original measure P

onto the set of measures which incorporate (3.1). We discuss I-projection

further in Section 6.

3.3 Jeffrey Independence

A second approach to the mathematical aspects of coumutativity of suc-

cessive Jeffrey updating uses independence. Two partitions e - {Ei},

-{F such that P(Ei) > 0, P(Fj) > 0 for all i and j , are P-inde-

pendent if

(3.4) P(EiIFj) - P(Ei) and P(FJIE1 ) - P(Ft) , all i, j

Independence says that conditioning on 3 does not change the probabilities

on e and vice versa. Analogously, we define:

13
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(3.5) .and 3 are Jeffrey independent with respect to P,{pi} and

{qj} if Pe(Fj) - P(Fj) and P (E1 ) - P(Ei) holds for all i and J.

(Briefly, "J-independent wrt {pi), {qjl".) Thus Jeffrey independence says

that Jeffrey updating on e with probability p does not change the pro-

bability on a and similarly with e and 3 interchanged. The next theo-

rem shows the connection with commutativity.

Theorem 3.2: Let P, {Ei,pil and {Fj qi} be given. Then P - P

if and only if e and 3 are Jeffrey independent with respect to P, {p},

{qj}.

Proof: Note that P e(A) - P W(A) for all events A if and only if

(3.6) L p P(AEF - PiPj P(AEiFj)

Choose A- E F to get

Pe(F O) P(Ei) = P (Ei) P(Fo) for all pairs i0, J0

Keeping i 0 fixed and summing over J0  yields

(3.7a) P(Ei0) - P (Ei ;
0 0

similarly, fixing J0 and summing over i0 yields

(3.7b) Pe(Fj P(F

Thus, e and a are Jeffrey independent with respect to P, {pl), {qj}.

Conversely, if (3.7) holds, then

14



Pe (Fj) P(E 1 ) = P(Fj) P(Ei) = P(Ei) P(F).

Using this equality shows that (3.6) holds and so Pe - P . 0

Theorem 3.3: Two partitions e and a are P-independent if and only

if e and a are Jeffrey independent with respect to any update probabili-

ties {pi) and {qj}.

Proof: First suppose 8 and a are P-independent. Then

(3.8) P(F) I P(FjiEi)Pi i P(Fj)pi - P(F)•
£

To see the converse, suppose 8 and 3 are not P-independent. Then

there exist El0 and F such that P(FJ E i) I P(F j). Pick pi 0

sufficiently close to 1. Then

I P(F 0 )Pi * P(F )

and hence (3.8) entails P (F. ) P(Fo). 0j

Example 3.3. (J-independence 4> P-independence). Suppose P(8ta)

is given by the following table

1i _ 2 3

P1 1/4 1/8 1/8 1/2

82 1/8 0 1/8 1/4

e3 1/8 1/8 0 1/4

1/2 1/4 1/4

15
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Then e and 3 are not independent, but update probabilities p, q exist

such that e and 3 are J-independent with respect to them (see below).

An efficient algorithm for checking J-independence, in this and other

examples, is the following. Let rij denote W. E. Johnson's coefficient of

dependence between Ei and Fj (cf. Keynes 1921, pp. 150-155), i.e.,

nj - P(EiF )

r ij - P(E.i P(F)

and let R - (rj) ; since EirijPi Pe(Fj )/P(Fj) and E jrjqj - P (Ei)/P(Ei),

it follows that e and 3 are J-independent with respect to {pi}, {qj} if

and only if

(3.8) EirijPi 1, all J E riq 1, all i.

In Example 3.3

R-1 0 2
1 2 0

and hence, if

O<pl and q (q,js 0 < q < 1

then ZR - 1, Rqt - 1 ; thus e, 3 are J-independent with respect to , q.

Remark. It is not hard to show that if at least one of the two partitions

e and 3 has only two elements, then J-independence for some p, q pair is

equivalent to P-independence, and hence to J-independence for all p, q.

16



Lest the reader think that commutativity always occurs when (3.1) can

be incorporated, we conclude this section with an example which has P e(E.)

= Pi (and of course P (F.) = qI) but such that P (F qi.

Example 3.4. Let e - {E,EI, 3 = {F,F} , and define P by

F

E 1/8 1/4 3/8

3/8 1/4 5/8

1/2 1/2

Suppose P1  P2  1/2 and q- - 7/15, q2 - 8/15. Then a simple computa-

tion shows that P (E) = 1/2 - P (E) , but P (F) ql.

17



4. COMBINING SEVERAL BODIES OF EVIDENCE

Suppose we undergo a complex of experiences that result in our simul-

taneously adopting new degrees of belief on two partitions e - {E and

- {Fj} ,say

(4.1) P (Ei) p and P*(Fj) - qj

How should we revise our subjective probabilities so as to incorporate these

new beliefs? In general, the theory put forth by de Finetti has no neat

mathematical atuswr to this question - you Just have to think about things

and quantify your opinion as best you can. In this section we discuss two

reasonable toutes through this quantification procedure. The routes are

reasor ile 1P the same sense that exchangeability is a reasonable thing to

consider when attempting to quantify probabilities on repeated events - the

circumstances which make them subjectively acceptable occur frequently. We

first discuss whether measures satisfying (4.1) exist and if so, how to

uniquely select one.

4.1 Coherence of P

If we are to adopt the degrees of belief P in (4.1), they must at

least be coherent, i.e., P must be extendable to a probability measure.

Theorem 4.1 provides a simple necessary and sufficient condition for the

existence of such extensions. The proof, given below in the Appendix, gives an
i *

efficient algorithm for computing P when both partitions are finite.

Theorem 4.1: Let n be a countable set, P - {EiI and 3 - {F }

two partitions of 9 , and P, Q two probability measures on e and 3

18
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I
respectively. There exists a probability measure P on fl such that

(4.1) holds if and only if whenever disjoint sets A and B are given,

with A a union of elements of e , B a union of elements of a

(4.2) P(A) + Q(B) < 1

Remark. Condition (4.2) is necessary but not sufficient for Theorem 4.1

to hold if Q is uncountable.

4.2 Extending P

If (4.1) is coherent, it remains to

(4.3) choose a probability P on the partition {Ei n FjI which agrees

with (4.1);

(4.4) extend P to all of Q.

If judged valid, the easiest way of accomplishing (4.3) is to use in-

dependence: P (E i n F) = P (E i ) P (Fj) piqj.

Richard Jeffrey (1957, Chapter 4) has advocated another route from (4.1)

to a final probability assignment: successive Jeffrey updating on e and

J. This raises two issues:

(4.5) When does successive updating satisfy (4.1)?

(4.6) When is successive updating reasonable?

Question (4.5) arises because Pea need not equal P . Indeed,

Example 3.4 provides a situation where (4.1) is coherent because P sa-

tisfies (4.1), but P e Pa. Since matters are simplified when Pe3 -Pe

we note that the results of Section 3 imply that the following three con-

ditions are equivalent
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(4.7a) P (A) = Pa(A) for all sets A.

(4.7b) Pe3(Ei) - P(Ei) and P (F) = P(Fj) for al i and J.

Even when the order does not matter, we still have the responsibility

of justifying the resort to successive updating, i.e., problem (4.6). one

approach to this is via checking the Jeffrey condition at each stage of up-

dating. This is a somewhat unorthodox mental exercise given we currently

believe (4.1), a condition involving both partitions. If we update first

on e , then we must check P(AIEi) = P (AIEi) which amounts to thinking

as if we don't know about j and are only thinking about e. At the second

stage, one then checks P (AIF ) - P (AIF) , comparing one's opinion not

knowing ; to one's opinion knowing J. Examples such as Example 3.4 show

that this can be tricky. It is a possible route, however, one more general

than the route using independence suggested before.

Remark 1. There is no reason to have P = P for successive updating

to be useful and valid. If each of the (J) conditions is judged valid in

forming P and if P satisfies (4.1), then P is a consistent quan-

tification of current belief.

Remark 2. Condition (4.7) implies that P and P cannot both incor-

porate (4.1) and both be judged acceptable updates (in the sense that the

(J) conditions have been checked) without P - P . Thus non-commutati-

vity is not a real problem for successive Jeffrey updating.
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5. MECHANICAL UPDATING

The approach we have taken thus far to justifying Jeffrey's rule is

subjective - through checking condition (J). Several authors - Griffeath

and Snell (1974), May and Harper (1976), Williama (1980), and van Fraassen

(1980) - have pursued a different justification. Given a prior P , parti-

tion {Ei} , and a new measure P on {E I , find the "closest" measure
i i

to P which agrees with P on the partition and take this as defining

P on the whole space. Since this way of proceeding does not attempt to

quantify one's new degrees of belief via introspection, we call this approach

mechanical updating.

5.1 Minimum Distance Properties

If "close" is defined in any of several common ways, the closest mea-

sure is that given in Jeffrey's rule. We illustrate this with three well

known notions of closeness between measures P and Q on the countable

set Q

(5.1) The variation distance

IIP-QII - sup{IP(B)-Q(B)I :B c: 0)

Two measures are close in variation distance if they are uniformly close on

all subsets.

(5.2) The Hellinger distance

H(P,Q) - [ (€i('T - )2 .

* (5.3) The Kullback-Leibler number of Q with respect to P
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I(Q,P) = .Q(W) log (Q(W)/P(W))

The variation and Hellinger distances are actual metrics on the space

of probability distributions, the Kullback-Leibler number is not, being

asymmetric in its arguments. Kailath (1967) and Csiszar (1977) are good

surveys with references of the properties of (5.1), (5.2), and (5.3).

Theorem 5.1: Let 0 be a countable set, P a probability on ,
*

and {E i} be a partition of Q. Suppose P (Ei) > 0 are given numbers

such that ZP (Ei) 1. Let Q be a probability on 0 such that Q(Ei) =

= P (Es). Then

(5.4) Q-P1 >f suplP(Ei) _ (

* 2

(5.5) H(Q,P) > E(V'T"- VP (E ,

(5.6) I(Q,P) > EP (Ei) log (P *(Ei)/P(Ei))

In (5.5), and (5.6) equality holds if and only if Q(A) = EP(AfE i) P (El).

Remarks. 1) Although the probability measure given by Jeffrey's rule mi-

nimizes the variation distance, it does not do so uniquely; see May (1976).

2) In Theorem 5.1, the minimum distance between P and Q is the distance

between P and Q viewed as measures on the partition {Eil}. 3) A result

like Theorem 5.1 holds for several other notions of distance; see Section 6

where a generalization of Theorem 5.1 is given.

5.2 I-Projections and the IPFP

Mechanical updating allows the possibility of updating on more general

collections of sets than partitions. Suppose we want to adapt new degrees

of belief P (Ei) " p, 1 < i < n , where e - {EIE 2 ,...,En } is not
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necessarily a partition of Q. This situation is closely related to

Jeffrey's proposal of updating simultaneously on several partitions, men-

tioned in Section 4, in as much as updating simultaneously on partitions
k

el' e2' .'" k is that same as updating on 8 - U i." Conversely, up-
i=l

dating on 8 f {E=,... ,En} can be viewed as updating simultaneously on the
partitions 81 = {EEc}, 82 = { 2 ~}, ..., e {E ,Ec}. In general, the

1'ln nn

set C = {Q: Q(Ei) = pl for all i is a convex set of probability measures

on 0 which can be empty, contain a single element, or contain many elements.

In the first case P is incoherent, in the second, P is uniquely deter-

mined. When the third case holds, we can use the Kullback-Leibler number

as a notion of "distance" to pick a unique number of C closest to P.

Theorem 5.2: Let S(P,-) = Q : I(Q,P) <-. If S(P,o) n C i o , then

there exists a unique element Qj E C such that I(Qj,P) - inf{I(Q,P): Q E C}.

Proof: This is an immediate consequence of Csiszar (1975, Theorem 2.1),

C being convex and closed with respect to the variation distance. 0

In Csisz~r's terminology, Qj is the I-projection of P onto C.

(The term is meant to suggest the projection of a vector in Rn onto a sub-

space.) The I-projection is closely related to a widely used technique in

the statistical analysis of contingency tables.

A standard method of adjusting an r x c contingency table so that it

has given marginal totals is the iterated proportional fitting procedure

(IPFP). In this, one first adjusts the table to have specified row sums,

say (by dividing the numbers of a given row by the appropriate factor), next

adjusts the new table to have the right column sums, and then continues

iteratively. It follows from Csiszfr (1975, Theorem 3.2) that this proce-

dure converges to the I-projection of the initial table onto the set of
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tables with the specified row and column sums. That is, the IPFP finds

the "closest" table to the original table with the prescribed margins

(provided, of course, this set is nonempty). This is essentially the same

as finding the closest measure to an initial probability with prescribed

values on two partitions.

The IPFP can be used to compute QJ of Theorem 5.2 by treating the

problem as an n-dimensional contingency table with given margins

P (E) I - (E)....

5.3 Comparing Different Metrics

Theorem 5.1 suggests that Jeffrey's rule is an uncontroversial form

of mechanical updating in the sense that it agrees with virtually every mi-

nimum distance rule. As noted above, in the case of two or more partitions,

the I-projection or maximum entropy solution can be viewed as a limiting

form of successive Jeffrey updating. This is perhaps of some interest in-

asmuch as mechanical updating via the other minimum distance methods need

not, in general, yield the same answer as the I-projection.

Example 5.1. (I-projection 0 minimum variation distance.) Consider

passing from an initial table

1/3 2/3

1/4 1/4 1/3 Pi P2
po M - - to P - ffi

1/4 1/4 1 2/3 P3  P4

a new table with the specified margins and which is otherwise as "close" to

the original table as possible, according to some notion of closeness.

I 1 2 4
a) The table P given by Pl 9p' P2 P 3  9' P4 - 9 minimizes

I(P,P o) since Po is independent and I-projections preserve the associa-

tion factor of a 2 x 2 table (see, e.g., Mosteller (1968), p. 3 ). The
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4

variation distance for this table is 1 -P I P - I Ip i Ij - .1 +

I_ + .1,.-I 1 .
i

b) To find the table PV with minimum variation distance from PO ,

subject to the margin constraints, note that given PI, one has P2 = P3

- and3 1lan P4 = Pl + 3" ec

1IP - POj1 I Pi = 4 -pll + 2 1-1  - pl + 1--- p,

2 211 1 12
which is minimized by P I the median of --- 1 - -. Hence

rl 1212' 12' 12'v 2 4 > and 1IvP II- . L6

There has been considerable interest recently in maximum entropy methods,

especially in the philosophical literature (Rosenkrantz (1979), Williams

(1980), van Fraassen (1980)). Example 5.1 suggests that any claims to the

effect that maximum entropy revision is the only correct route to probability

revision should be viewed with considerable caution because of its strong

dependence on the measure of closeness being used.
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6. ABSTRACT PROBABILITY KINEMATICS

In this section we briefly discuss the generalization of Jeffrey's

rule of conditioning from the countable setting to general spaces. The

need for such a generalization is shown by passing to the limit in the ex-

ample of Section 1.1.

Example 6.1. Consider an infinite sequence of zero or one outcomes

9 X2 , Xj .... Suppose that the joint distribution of Xi is exchange-

able and set Sn X 1 + ... + X . Then, as shown by de Finetti, the limit

S
Z -lim-

n

exists almost surely and

P(S = kZ = p) - (k)pk(l-p)nk

One consequence of de Finetti's theorem is that one may decide on a subjec-

tive probability distribution for an infinite exchangeable sequence of coin-

tosses by introspecting on the "prior distribution" P{Z e dp} dip(p). In

the example of Section 1.1, the effect of the informant's information could

be taken into account by choosing a new prior dV (p) and Jeffrey's rule

becomes:

* II (l~ n-k d*p

P (S = k)- ' p (lp) (p)

This illustrates the use of Jeffrey updating via a continuous "sufficient

statistic" rather than a countable "sufficient partition". The generaliza-

tion we use replaces partitions by a-algebras.
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Consider a probability space (0, G, P) , thought of as describing

our current subjective beliefs about the a-algebra of events G. Let P

be a new probability measure on Q and G0 C G a sub-a-algebra of G.
-*

Let C be an G 0-measurable set such that P(C) = 0 and P P on
-- *

- C , where P, P are the restrictions of P, P to Go. The appro-

priate version of Jeffrey's condition (J) is:

(J') G0  is sufficient for {P,P .

When condition (J') holds, Jeffrey's rule of conditioning becomes:

* j. * *

(6.1) P (A) = J P(AIG 0) P (dw) + P (A n C) ,

where P(AIG 0 ) is the conditional probability of A given G0 . If

P << P , we can take C =

Much of the mathematical machinery for dealing with Jeffrey condition-

alization in this generality has been developed (for a different purpose)

by Csiszar (1967). His Le-ma 2.2 translates into a likelihood ratio version

of Jeffrey's rule (compare (2.2)): Let X be a a-finite measure which
• -

dominates P, P . Let X, P P be the restrictions to Go. Assume

is a-finite. Let p(x) p (x) be the densities of P, P with respect to
* *

and p the density of p with respect to X. If condition (J') holds,

then:

*(x)/P-(x) if (x) > 0

(6.2) p (x) 

p*x if p(x) 0

Identity (6.2) is a version of the Fisher-Neyman factorization theorem (see

Halmos and Savage (1949)).
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Csiszir's results allow us to give a single theorem which includes

Theorem 5.1, showing that the closest measure to P which agrees with P

on G is the measure given by (6.1). Csiszir has introduced the notion

of f-divergence, where f is a convex function defined in the interval

(0,-). If u and 12 are two measures on (Q, G) , the f-divergence of

Ui and U2 is

I f 01VU2 P2() f Pl(X) Adx

p2(x))

Addx
dlai

where Vi < < X and p = d- i 1,2). Taking f(u) = u log u gives the

Kullback-Leibler number, f(u) - (u1 /2 - 1)2 the Hellinger distance,

f(u) - Iu - 11 the variation distance. Csiszar shows that several other

notions of distance are also f-divergences for an appropriate f.

Theorem 6.1: Let C be the set of probability measures on (Q, CI)

which agree with P on G o , and f a convex function on (0,-). Then

under condition (J'),

*
(6.3) If(P*,P) = (P = inf{If(Q,P) : Q E C}

If f is strictly convex, then P is the unique probability measure on

CL which minimizes the right-hand side of (6.3).

Proof: The first equality follows from the sufficiency of G for

{P,P*} , the second from Csiszir's (1967, Section 3) version of the minimum

information discrimination theorem of Kullback and Leibler: If(Q,P) > If(Q,P).

Since If(Q,P) - If ,P (6.3) follows. If f is strictly convex,

If(.,P) is also, and the theorem follows. 0

28



I
APPENDIX

We first prove a slight generalization of Theorem 4.1:

Theorem 4.2: Let 9 be a countable set, S a a-algebra of subsets,

and B sub-a-algebras of S , and v and v probability measures on

C and B respectively. A necessary and sufficient condition for there to

exist a probability measure P on (S1,S) such that P equals p on G

and P equals V on S is

(4.8) for each A E G and B c B such that A n B- ,

V(A) + v(B) < 1

Proof: The condition is clearly necessary. To prove sufficiency, let

{Ai 001 be the atoms of G and {B }1  be the atoms of B. Let
i-i i-

Q = {Ai}i-I and Sl= {Bi}i both thought of as discrete topological

spaces. In fa x , consider the set F - U Ai x B This is a
Atis10

closed set in Qa x " and according to Theorem 11 of Strassen (1964) a

necessary and sufficient condition fnr there to exist a probability measure

y on F such that y has margins U and v is that for every B E 8,

(4.9) v(B) < U(na (F n S x B))

where 7a is the projection of a set into its first coordinate. Clearly

Ia (F n S x B) - A is the smallest G measurable set containing B.
Aiam i

Thus Strassen's condition (4.9) is satisfied if and only if

(4.10) whenever A e G, B c B and B c A, V(B) < (A)

Condition (4.10) is equivalent to (4.8). Hence Strassen's theorem gives a

measure y which may be regarded as a measure on the partition {Ai ( Bj}.
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Since 1 is countable, y can clearly be extended to a measure on all of

Q and then restricted to a measure P on S with the desired properties. 0

In the proof of Theorem 4.2, we have used Strassen's theorem, which

itself uses the Hahn-Banach theorem. When the two partitions are both com-

posed of a finite number of sets, Hansel and Troallic (1978) have shown

that Strassen's theorem follows from the max flow-min cut theorem. There

are efficient algorithns for finding maximum flows, and hence for checking

(4.2), in Bondy and Murty (1976), Chapter 11.

Finally, we consider the extension of Theorem 4.2 to more general

spaces.

Let (S,S) be a measurable space, let a, B be sub-o-algebras of S

and let p and V be probability measures on G and B respectively.

When does there exist a probability measure P on a(G, B) such that P

restricts to V on Cj and V on B? We have argued above that if s is

countable, then a necessary and sufficient condition is

(4.11) VA E G, B c J, Afl B - U(A) + V(B) < 1l

It is easy to show that (4.11) is in fact necessary and sufficient for

the existence of a finitely additive measure P on the algebra generated

by C and 6 (and hence on the algebra of all subsets of S) which re-

stricts to p on G and v on B , even if a and B are merely alge-

bras. Briefly, one considers the following linear subspace of bounded real

valued functions from SI: L - {f + g: f is G measurable and g is B

measurable}, and extends the positive linear functional L(f+ g) - U(f)+v(g)

using the Hahn-Banach theorem. Condition 4.11 is then used to show Z

is well defined.
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We now present an example due to David Freedman and Jim Pitman which

shows that condition (4.11) is not sufficient to ensure that a countably

additive extension of P and V exists. The example shows a bit more:

it shows that Theorem 11 of Strassen (1965) cannot be extended to give con-

ditions for a measure on an Fa set of the unit square to have given mar-

gins.

Example 4.2. (D. Freedman, J. Pitman): There exists an F set K

in the unit square and a finitely additive probability iT on K which has

marginal projections equal to Lebesgue measure on each coordinate but such

that K supports no countably additive probability with these margins.

Remark. Taking 0 = K

,- {(A x o,li]) n K: A is a Bore1 set of [0,l]} ,

3- {([0,] x B n K: B is a Borel set of [0,1]}

with V and V as Lebesgue measure on G and 6 respectively, gives a

situation in which 4.11 is satisfied (since a finitely additive refinement

exists) but no countably additive refinement exists.

Proof: To construct K , let an be a sequence of numbers in (0,1)

with an t 1. Let k n be the line in the unit square connecting (0,0) to

(l,an). Let K - U tn . Note that K does not include the diagonal. To

construct V , let tn be Lebesgue measure on the Borel sets of In" Let

p be any finitely additive probability measure defined on all subsets of

the integers {1,2,3,...} such that p is zero on finite subsets. Let

i(s) - f in(s) p(dn). Each v n , considered as a probability on K , pro-

jects to Lebesgue measure on the x-axis of the unit square. Further, the

projection of 1Tn onto the y-axis of the unit square gives Lebesgue
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measure restricted to the set 1(0,y): 0 < y < an 1. It follows easily

that the y-axis margin of is Lebesgue measure. It only remains to argue

that K does not support a countably additive probability measure P which

projects to Lebesgue measure. If X: K + [0,1] , and Y: K - (0,1] are
1

the two projections, then E(X) - E(Y) -- because each of X and Y are

uniformly distributed by construction. Any countably additive P would have

to put positive probability on some line Zn and since for all (x,y) e K,

y < x , this forces E(X) > E(Y). The contradiction shows P cannot exist. 0

Persi Diaconis is Professor, Department of Statistics, Stanford University,

Stanford, California 94305. Sandy L. Zabell is Associate Professor,Department of Mathematics, Northwestern University, Evanston, Illinois
60201. The authors are grateful to I. J. Good, Richard C. Jeffrey,
Sherry May, and Amos Tversky for helpful comments and suggestions.

32



- 1

REFERENCES

Armendt, B. (1980). "Is there a Dutch book argument for probability kine-
matics?", Philosophy of Science 47, 583-588.

Blackwell, D., and Gixshick, M. A. (1954). Theory of Games and Statistical
Decisions, New York: John Wiley and Sons.

Bondy, J. A., and Murty, U. S. R. (1976). Graph Theory with Applications,
New York: American Elsevier.

Boole, G. (1854). An Investigation of the Laws of Thought on Which are
Founded the Mathematical Theories of Logic and Probabilities, London:
Macmillan.

Csiszgr, I. (1967). "Information type measures of difference of probability
distributions and indirect observations", Studia Sci. Math. Hung. 2,
299-318.

Csiszgr, I. (1975). "I-divergence geometry of probability distributions of
minimization problems", Annals of Probability 3, 146-158.

Csiszgr, I. (1977). "Information measures: A critical survey", Trans.
Seventh Prague Conf., (Prague 1974), Prague: Academia, 73-86.

Domotor, Z. (1980). "Probability kinematics and representation of belief
change", Philosophy of Science 47, 384-403.

Domotor, Z., Zanotti, M., and Graves, H. (1980). "Probability kinematics",
Synthese 44, 421-442.

Donkin, W. F. (1851). "On certain questions relating to the theory of pro-
babilities", Phil. Mag. Series 4, 1, 353-368.

Field, H. (1978). "A note on Jeffrey conditionalization", Philosophy of
Science 45, 361-367.

de Finetti, B. (1972). Probability, Induction and Statistics, New York:
John Wiley and Sons.

de Finetti, B. (1974). Theory of Probability (Vol. 1), New York: John
Wiley and Sons.

de Finetti, B. (1975). Theory of Probability (Vol. 2), New York: John
Wiley and Sons.

Fischoff, B. (1975). "Hindsight 0 foresight: The effect of outcome know-
ledge on Judgement under uncertainty", Journal of Experimental
Psychology: Human Perception and Performance 1, 288-299.

Fischoff, B.,and Beyth, R. (1975). "I knew it would happen - remembered
probabilities of once future things", Organizational Behavior and
Human Performance 13, 1-16.

33



Freedman, D., and Purves, R. (1969). "Bayes method for bookie*;", Annals

of Mathematical Statistics 40, 1177-1186.

Garber, D. (1980). "Discussion: Field and Jeffrey conditionalization",
Philosophy of Science 47, 142-145.

Garber, D. (1982). "Old evidence and logical omniscience in Bayesian con-
firmation theory", Minnesota Studies in Philosophy of Science, forth-

coming.

Good, I. J. (1950). Probability and the Weighing of Evidence, New York:

Hafner.

Good, I. J. (1968). "Corroboration, explanation, evolving probability,
simplicity, and a sharpened razor", British Journal for the Philosophy

of Science 19, 123-143.

Good, I. J. (1977). "Dynamic probability, computer chess, and the measure-

ment of knowledge", in Machine Intelligence 8, ed. E. W. Elcock and

D. Mitchie, Ellis Horwood Ltd. and John Wylie, 139-150.

Griffeath, D., and Snell, L. J. (1974). "Optimal stopping in the stock

market", Annals of Probability 2, 1-13.

Hacking, I. (1967). "Slightly more realistic personal probability",
Philosophy of Science 34, 311-325.

Halmos, P., and Savage, L. J. (1949). Application of the Radon-Nikodym
theorem to the theory of sufficient statistics, Annals of Mathematical

Statistics 20, 225-241.

Hansel, G., and Troallic, J. P. (1978). "Measures marginales et theoreme

de Ford-Fulkerson", Z. Wahrscheinlichkeitstheorie verw. Gebiete 43,

245-251.

Jamieson, B. (1974). "A Martin boundary interpretation of the maximum
entropy argument", Z. Wahrscheinlichkeitstheorie verw. Gebiete 30,
265-272.

Jeffrey, R. (1957). Contributions to the Theory of Inductive Probability,
Ph.D. thesis, Princeton University.

Jeffrey, R. (1965). The Logic of Decision, New York: McGraw-Hill.

Jeffrey, R. (1968). "Probable knowledge", in The Problem of Inductive
Logic, ed. I. Lakatos, Amsterdam: North-Holland, 166-180.

Jeffrey, R. (1970). "Dracula meets Wolfman: Acceptance vs. partial belief",
Induction Acceptance and Rational Belief, ed. M. Swain, Dordrecht:
Reidel, 157-185.

34



Jeffrey, R. (1982). "Bayesianism with a human face", Minnesota Studies in
Philosophy of Science, forthcoming.

Kailath, T. (1967). "The divergence and Bhattacharya distance measures
in signal detection", IEEE Transactions on Comm. Tech. 15, 52-60.

Keynes, J. M. (1921). A Treatise on Probability, London: Macmillan.

Kullback, S. (1959). Information Theory and Statistics, New York: John
Wiley and Sons.

Lehmann, E. (1959). Testing Statistical Hypotheses, New York: John Wiley
and Sons.

Levi, I. (1967). "Probability kinematics", Philosophy of Science 18,
197-209.

Levi, I. (1970). "Probability and evidence" in Induction, Acceptance, and
Rational Belief, ed. Swain, Dordrecht: Reidel, 134-156.

May, S. (1976). "Probability kinematics: a constrained optimization
problem", Journal of Philosophical Logic 5, 395-398.

May, S., and Harper, W. (1976). "Toward an optimization procedure for
applying minimum change principles in probability kinematics", in
Foundations of Probability Theory, Statistical Inference, and Sta-
tistical Theories of Science (ol. 1), eds. W. L. Harper and C. A.
Hooker, Dordrecht: Reidel, 137-166.

Mosteller, F. (1968). "Association and estimation in contingency tables",
Journal of the American Statistical Association 63, 1-28.

Ramsey, F. P. (1931). "Truth and probability", in The Foundations of
Mathematics and Other Logical Essays, ed. R. B. Braithwaite, London:
Routledge and Kegan, P., 156-198. Reprinted in (1964) in Studies in
Subjective Probability, eds. H. E. Kyburg, Jr., and H. E. Smokler,
New York: John Wiley and Sons, 61-92.

Rosenkrantz, R. D. (1977). Inference, Method, and Decision, Dordrecht:
Reidel.

Savage, L. J. (1967). "Difficulties in the theory of personal probability",
Philosophy of Science 34, 305-310.

Shafer, G. (1976). A Mathematical Theory of Evidence, Princeton, New Jersey:
Princeton University Press.

Shafer, G. (1979). "Two theories of probability", in PSA 1978, Vol. 2,
East Lansing, Michigan: Philosophy of Science Association.

35



I

Shafer, G. (1981). "Jeffrey's rule of conditioning", Philosophy of Science

48, 337-362.

Slovic, P., and Fischoff, B. (1977). "On the psychology of experimental

surprises", Journal of Experimental Psychology: Human Perception and

Performance 3, 544-551.

Strassen, V. (1965). "The existence of probability measures with given

marginals", Annals of Mathematical Statistics 36, 423-439.

Teller, P. (1976). "Conditionalization, observation, and change of pre-

ference", in Foundations of Probability Theory, Statistical 
Inference,

and Statistical Theories of Science (Vol. 1), eds. W. L. Harper and

C. A. Hooker, Dordrecht: Reidel, 205-253.

van Fraassen, Bas. C. (1980). "Rational belief and probability kinematics",

Philosophy of Science 47, 165-187.

Whitworth, W. A. (1901). Choice and Chance, 5th ed., Cambridge: Deighton

Bell and Co.

Williams, P. M. (1980). "Bayesian conditionalization and the principle of

minimum information", British Journal for the Philosophy 
of Science 31,

131-144.

36

-j



UNCLASSI FIED
s6SCURITY CLASSIFICATION OF THIS PAGE rwh Dle Entred)

REPORT DOCUMENTATION PAGE BFRED COMPLTRMcT o
1. REPORT NUMBERI j OVT ACCESSION NO0 . RECIPIENT'S CATALOG NUMOER

315 .4~h A -~-~ f
4. TITLE (and &.bnail.) S. TYPE OF REPORT & PERIOD COVERED

UPDATING SUBJECTIVE PROBABILITY TECHNICAL REPORT
S. PERFORMIN.G OR. REPORT NUMBER

7. AUTHOR(S) S. CONTRACT OR GRANT NUMBE(.)

PERSI DIACONIS and SANDY L. ZABELL N00014-76-C-0475

. PERFORMING ORGANIZATION NAME AND ADDRESS SO- PROGRAM ELFJ.ENT. PROJECT. TASK

Depatmen of tatiticsAREA A WORK U NIT NUMBERS

Stanford University N-4-6
Stanford,_CA_94305______________

St. CONTROLLING OFFICE NAME AND ADDRESS IZ. REPORT DATE

Office Of Naval Research MARCH 2. 1982
Statistics & Probabiliy PrgamCd346. NUMBER OFPAGES
Arlinator. VA 22217 36

14. MONITORING A3vENCY NAME & ADORESS(if different frow Controlling Office) I5. SECURITY CLASS. (of thle ropolt)

UNCLASSIFIED
1S.. DECLASSI FICATION/OOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED.

17. DISTRIBUTION STATEMENT rat te aber,ecr entefed in Block 20. it dfli.,.nt from Report)

IS. SUPPLEMENTARY NOTES

This is a revised version of Technical Report No. 136, October 1979, -issued
under National Science Foundation Grant MCS77-16974.

IS. s'ZY WORDS (Continue on reverse old* it n~c...mry and Idrnf by block numbe")

Subjective probability; Non-conditioning methods; Exchangeability.

20. Al R1AACT (Continue on revers. &Igo fin.coeoy and Identify, by block nw. bet)

PLEASE SEE REVERSE SIDE.

DO IJAN2 173 DITOW O I isIS BSOETEUNCLASSIFIED
SiN 0!02- ut-:.-!0 SECURITY CLASSIFICATION OF TWIS PACE (When Dot.le 00P



UNCLASS IF IED
SIRCURITY CLASSIFICATION OF TH4IS PAGS (1111. 04W& Zate.4

# 315

UPDATING SUBJECTIVE PROBABILITY

Jeffrey's rule for revising a probability P to a new probability

P *based on a partition {E }n is
£ i-1

P* (A) - P(AJE 1i) P*(E i)

This is valid if it is judged that P *(AIE i) P(AIE i) for all A and i.

This paper discusses some of the mathematical properties of thts-rxte, con-

necting it with sufficient partitions, and maximum entropy updating of con-

tingency tables. The main results concern simultaneous revision on two

partitions.

UNCLASSIFIED




